DDC 0.10.0
Loading...
Searching...
No Matches
splines_linear_problem_2x2_blocks.hpp
1// Copyright (C) The DDC development team, see COPYRIGHT.md file
2//
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
7#include <cstddef>
8#include <memory>
9
10#include <Kokkos_Core.hpp>
11#include <Kokkos_DualView.hpp>
12
14
15namespace ddc::detail {
16
17/**
18 * @brief A 2x2-blocks linear problem dedicated to the computation of a spline approximation,
19 * with all blocks except top-left one being stored in dense format.
20 *
21 * A = | Q | gamma |
22 * | lambda | delta |
23 *
24 * The storage format is dense row-major for top-left, top-right and bottom-left blocks, and determined by
25 * its type for the top-left block.
26 *
27 * This class implements a Schur complement method to perform a block-LU factorization and solve,
28 * calling top-left block and bottom-right block setup_solver() and solve() methods for internal operations.
29 *
30 * @tparam ExecSpace The Kokkos::ExecutionSpace on which operations related to the matrix are supposed to be performed.
31 */
32template <class ExecSpace>
33class SplinesLinearProblem2x2Blocks : public SplinesLinearProblem<ExecSpace>
34{
35public:
36 using typename SplinesLinearProblem<ExecSpace>::MultiRHS;
37 using SplinesLinearProblem<ExecSpace>::size;
38
39 /**
40 * @brief COO storage.
41 */
42 struct Coo;
43
44protected:
45 std::unique_ptr<SplinesLinearProblem<ExecSpace>> m_top_left_block;
46 Kokkos::DualView<double**, Kokkos::LayoutRight, typename ExecSpace::memory_space>
47 m_top_right_block;
48 std::unique_ptr<Coo> m_top_right_block_coo;
49 Kokkos::DualView<double**, Kokkos::LayoutRight, typename ExecSpace::memory_space>
50 m_bottom_left_block;
51 std::unique_ptr<Coo> m_bottom_left_block_coo;
52 std::unique_ptr<SplinesLinearProblem<ExecSpace>> m_bottom_right_block;
53
54public:
55 /**
56 * @brief SplinesLinearProblem2x2Blocks constructor.
57 *
58 * @param mat_size The size of one of the dimensions of the square matrix.
59 * @param top_left_block A pointer toward the top-left SplinesLinearProblem. `setup_solver` must not have been called on it.
60 */
61 explicit SplinesLinearProblem2x2Blocks(
62 std::size_t mat_size,
63 std::unique_ptr<SplinesLinearProblem<ExecSpace>> top_left_block);
64
65 SplinesLinearProblem2x2Blocks(SplinesLinearProblem2x2Blocks const& rhs) = delete;
66
67 SplinesLinearProblem2x2Blocks(SplinesLinearProblem2x2Blocks&& rhs) = delete;
68
69 ~SplinesLinearProblem2x2Blocks() override;
70
71 SplinesLinearProblem2x2Blocks& operator=(SplinesLinearProblem2x2Blocks const& rhs) = delete;
72
73 SplinesLinearProblem2x2Blocks& operator=(SplinesLinearProblem2x2Blocks&& rhs) = delete;
74
75 double get_element(std::size_t i, std::size_t j) const override;
76
77 void set_element(std::size_t i, std::size_t j, double aij) override;
78
79 /**
80 * @brief Fill a COO version of a Dense matrix (remove zeros).
81 *
82 * Runs on a single thread to guarantee ordering.
83 *
84 * @param[in] dense_matrix The dense storage matrix whose non-zeros are extracted to fill the COO matrix.
85 * @param[in] tol The tolerancy applied to filter the non-zeros.
86 *
87 * @return The COO storage matrix filled with the non-zeros from dense_matrix.
88 */
89 std::unique_ptr<Coo> dense2coo(
90 Kokkos::View<double const**, Kokkos::LayoutRight, typename ExecSpace::memory_space>
91 dense_matrix,
92 double tol = 1e-14);
93
94private:
95 /// @brief Compute the Schur complement delta - lambda*Q^-1*gamma.
96 void compute_schur_complement();
97
98public:
99 /**
100 * @brief Perform a pre-process operation on the solver. Must be called after filling the matrix.
101 *
102 * Block-LU factorize the matrix A according to the Schur complement method. The block-LU factorization is:
103 *
104 * A = | Q | 0 | | I | Q^-1*gamma |
105 * | lambda | delta - lambda*Q^-1*gamma | | 0 | I |
106 *
107 * So we perform the factorization inplace to store only the relevant blocks in the matrix (while factorizing
108 * the blocks themselves if necessary):
109 *
110 * | Q | Q^-1*gamma |
111 * | lambda | delta - lambda*Q^-1*gamma |
112 */
113 void setup_solver() override;
114
115 /**
116 * @brief Compute y <- y - LinOp*x or y <- y - LinOp^t*x with a sparse LinOp.
117 *
118 * Perform a spdm operation (sparse-dense matrix multiplication) with parameters alpha=-1 and beta=1 between
119 * a sparse matrix stored in COO format and a dense matrix x.
120 *
121 * @param[in] LinOp The sparse matrix, left side of the matrix multiplication.
122 * @param[in] x The dense matrix, right side of the matrix multiplication.
123 * @param[inout] y The dense matrix to be altered by the operation.
124 * @param transpose A flag to indicate if the direct or transposed version of the operation is performed.
125 */
126 void spdm_minus1_1(Coo const& LinOp, MultiRHS x, MultiRHS y, bool transpose = false) const;
127
128 /**
129 * @brief Solve the multiple right-hand sides linear problem Ax=b or its transposed version A^tx=b inplace.
130 *
131 * The solver method is the one known as Schur complement method. It can be summarized as follow,
132 * starting with the pre-computed elements of the matrix:
133 *
134 * | Q | Q^-1*gamma |
135 * | lambda | delta - lambda*Q^-1*gamma |
136 *
137 * For the non-transposed case:
138 * - Solve inplace Q * x'1 = b1 (using the solver internal to Q).
139 * - Compute inplace b'2 = b2 - lambda*x'1.
140 * - Solve inplace (delta - lambda*Q^-1*gamma) * x2 = b'2.
141 * - Compute inplace x1 = x'1 - (delta - lambda*Q^-1*gamma)*x2.
142 *
143 * @param[in, out] b A 2D Kokkos::View storing the multiple right-hand sides of the problem and receiving the corresponding solution.
144 * @param transpose Choose between the direct or transposed version of the linear problem.
145 */
146 void solve(MultiRHS b, bool transpose) const override;
147};
148
149#if defined(KOKKOS_ENABLE_SERIAL)
150extern template class SplinesLinearProblem2x2Blocks<Kokkos::Serial>;
151#endif
152#if defined(KOKKOS_ENABLE_OPENMP)
153extern template class SplinesLinearProblem2x2Blocks<Kokkos::OpenMP>;
154#endif
155#if defined(KOKKOS_ENABLE_CUDA)
156extern template class SplinesLinearProblem2x2Blocks<Kokkos::Cuda>;
157#endif
158#if defined(KOKKOS_ENABLE_HIP)
159extern template class SplinesLinearProblem2x2Blocks<Kokkos::HIP>;
160#endif
161#if defined(KOKKOS_ENABLE_SYCL)
162extern template class SplinesLinearProblem2x2Blocks<Kokkos::SYCL>;
163#endif
164
165} // namespace ddc::detail
friend class ChunkSpan
friend class Chunk
Definition chunk.hpp:83
friend class DiscreteDomain
KOKKOS_FUNCTION constexpr bool operator!=(DiscreteVector< OTags... > const &rhs) const noexcept
A class which provides helper functions to initialise the Greville points from a B-Spline definition.
static ddc::DiscreteDomain< Sampling > get_domain()
Get the domain which gives us access to all of the Greville points.
static auto get_sampling()
Get the UniformPointSampling defining the Greville points.
Helper class for the initialisation of the mesh of interpolation points.
static auto get_sampling()
Get the sampling of interpolation points.
static ddc::DiscreteDomain< Sampling > get_domain()
Get the domain which can be used to access the interpolation points in the sampling.
Storage class of the static attributes of the discrete dimension.
Impl & operator=(Impl &&x)=default
Move-assigns.
Impl(RandomIt breaks_begin, RandomIt breaks_end)
Constructs an Impl by iterating over a range of break points from begin to end.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the first break point of the domain on which the B-splines are defined.
Impl(std::vector< ddc::Coordinate< CDim > > const &breaks)
Constructs an Impl using a std::vector.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(Impl &&x)=default
Move-constructs.
Impl(std::initializer_list< ddc::Coordinate< CDim > > breaks)
Constructs an Impl using a brace-list, i.e.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION std::size_t npoints() const noexcept
The number of break points.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl & operator=(Impl const &x)=default
Copy-assigns.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the last break point of the domain on which the B-splines are defined.
The type of a non-uniform 1D spline basis (B-spline).
static constexpr std::size_t degree() noexcept
The degree of B-splines.
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is not the case here).
NonUniformPointSampling models a non-uniform discretization of the CDim segment .
A class for creating a spline approximation of a function.
batched_derivs_domain_type< BatchedInterpolationDDom > batched_derivs_xmax_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which derivatives on upper boundary are defined.
static constexpr SplineSolver s_spline_solver
The SplineSolver giving the backend used to perform the spline approximation.
batch_domain_type< BatchedInterpolationDDom > batch_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the batch domain.
std::tuple< ddc::Chunk< double, ddc::DiscreteDomain< ddc::Deriv< typename InterpolationDDim::continuous_dimension_type > >, ddc::KokkosAllocator< double, OutMemorySpace > >, ddc::Chunk< double, ddc::DiscreteDomain< InterpolationDDim >, ddc::KokkosAllocator< double, OutMemorySpace > >, ddc::Chunk< double, ddc::DiscreteDomain< ddc::Deriv< typename InterpolationDDim::continuous_dimension_type > >, ddc::KokkosAllocator< double, OutMemorySpace > > > quadrature_coefficients() const
Compute the quadrature coefficients associated to the b-splines used by this SplineBuilder.
SplineBuilder & operator=(SplineBuilder const &x)=delete
Copy-assignment is deleted.
SplineBuilder(SplineBuilder &&x)=default
Move-constructs.
SplineBuilder(interpolation_domain_type const &interpolation_domain, std::optional< std::size_t > cols_per_chunk=std::nullopt, std::optional< unsigned int > preconditioner_max_block_size=std::nullopt)
Build a SplineBuilder acting on interpolation_domain.
static constexpr ddc::BoundCond s_bc_xmin
The boundary condition implemented at the lower bound.
static constexpr int s_nbc_xmin
The number of equations defining the boundary condition at the lower bound.
SplineBuilder & operator=(SplineBuilder &&x)=default
Move-assigns.
BatchedInterpolationDDom batched_interpolation_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain representing interpolation points.
SplineBuilder(SplineBuilder const &x)=delete
Copy-constructor is deleted.
SplineBuilder(BatchedInterpolationDDom const &batched_interpolation_domain, std::optional< std::size_t > cols_per_chunk=std::nullopt, std::optional< unsigned int > preconditioner_max_block_size=std::nullopt)
Build a SplineBuilder acting on the interpolation domain contained by batched_interpolation_domain.
static constexpr bool s_odd
Indicates if the degree of the splines is odd or even.
interpolation_domain_type interpolation_domain() const noexcept
Get the domain for the 1D interpolation mesh used by this class.
batched_derivs_domain_type< BatchedInterpolationDDom > batched_derivs_xmin_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which derivatives on lower boundary are defined.
static constexpr ddc::BoundCond s_bc_xmax
The boundary condition implemented at the upper bound.
static constexpr int s_nbc_xmax
The number of equations defining the boundary condition at the upper bound.
void operator()(ddc::ChunkSpan< double, batched_spline_domain_type< BatchedInterpolationDDom >, Layout, memory_space > spline, ddc::ChunkSpan< double const, BatchedInterpolationDDom, Layout, memory_space > vals, std::optional< ddc::ChunkSpan< double const, batched_derivs_domain_type< BatchedInterpolationDDom >, Layout, memory_space > > derivs_xmin=std::nullopt, std::optional< ddc::ChunkSpan< double const, batched_derivs_domain_type< BatchedInterpolationDDom >, Layout, memory_space > > derivs_xmax=std::nullopt) const
Compute a spline approximation of a function.
batched_spline_domain_type< BatchedInterpolationDDom > batched_spline_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which spline coefficients are defined.
ddc::DiscreteDomain< bsplines_type > spline_domain() const noexcept
Get the 1D domain on which spline coefficients are defined.
~SplineBuilder()=default
Destructs.
Storage class of the static attributes of the discrete dimension.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(ddc::Coordinate< CDim > rmin, ddc::Coordinate< CDim > rmax, std::size_t ncells)
Constructs a spline basis (B-splines) with n equidistant knots over .
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the upper bound of the domain on which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the lower bound of the domain on which the B-splines are defined.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl &&x)=default
Move-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
Impl & operator=(Impl &&x)=default
Move-assigns.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
Impl & operator=(Impl const &x)=default
Copy-assigns.
The type of a uniform 1D spline basis (B-spline).
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is the case here).
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr std::size_t degree() noexcept
The degree of B-splines.
UniformPointSampling models a uniform discretization of the provided continuous dimension.
The top-level namespace of DDC.
constexpr int n_boundary_equations(ddc::BoundCond const bc, std::size_t const degree)
Return the number of equations needed to describe a given boundary condition.
constexpr bool is_uniform_bsplines_v
Indicates if a tag corresponds to uniform B-splines or not.
BoundCond
An enum representing a spline boundary condition.
@ GREVILLE
Use Greville points instead of conditions on derivative for B-Spline interpolation.
@ HERMITE
Hermite boundary condition.
@ PERIODIC
Periodic boundary condition u(1)=u(n)
ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > integrals(ExecSpace const &execution_space, ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > int_vals)
Compute the integrals of the B-splines.
SplineSolver
An enum determining the backend solver of a SplineBuilder or SplineBuilder2d.
@ LAPACK
Enum member to identify the LAPACK-based solver (direct method)
@ GINKGO
Enum member to identify the Ginkgo-based solver (iterative method)
constexpr bool is_non_uniform_bsplines_v
Indicates if a tag corresponds to non-uniform B-splines or not.
A templated struct representing a discrete dimension storing the derivatives of a function along a co...
Definition deriv.hpp:15
If the type DDim is a B-spline, defines type to the discrete dimension of the associated knots.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos, ddc::Coordinate< DimNI > eval_pos_not_interest_min, ddc::Coordinate< DimNI > eval_pos_not_interest_max)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType coord_extrap, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines1, BSplines2 >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType pos, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.
A functor describing a null extrapolation boundary value for 1D spline evaluator.
KOKKOS_FUNCTION double operator()(CoordType, ChunkSpan) const
Evaluates the spline at a coordinate outside of the domain.
KOKKOS_FUNCTION double operator()(CoordType, ChunkSpan) const