DDC 0.10.0
Loading...
Searching...
No Matches
splines_linear_problem.hpp
1// Copyright (C) The DDC development team, see COPYRIGHT.md file
2//
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
7#include <cstddef>
8#include <iosfwd>
9
10#include <Kokkos_Core.hpp>
11
12namespace ddc::detail {
13
14/**
15 * @brief The parent class for linear problems dedicated to the computation of spline approximations.
16 *
17 * Store a square matrix and provide method to solve a multiple right-hand sides linear problem.
18 * Implementations may have different storage formats, filling methods and multiple right-hand sides linear solvers.
19 */
20template <class ExecSpace>
21class SplinesLinearProblem
22{
23public:
24 /// @brief The type of a Kokkos::View storing multiple right-hand sides.
25 using MultiRHS = Kokkos::View<double**, Kokkos::LayoutRight, typename ExecSpace::memory_space>;
26
27private:
28 std::size_t m_size;
29
30protected:
31 explicit SplinesLinearProblem(std::size_t size);
32
33public:
34 SplinesLinearProblem(SplinesLinearProblem const& x) = delete;
35
36 SplinesLinearProblem(SplinesLinearProblem&& x) = delete;
37
38 /// @brief Destruct
39 virtual ~SplinesLinearProblem();
40
41 SplinesLinearProblem& operator=(SplinesLinearProblem const& x) = delete;
42
43 SplinesLinearProblem& operator=(SplinesLinearProblem&& x) = delete;
44
45 /**
46 * @brief Get an element of the matrix at indexes i, j. It must not be called after `setup_solver`.
47 *
48 * @param i The row index of the desired element.
49 * @param j The column index of the desired element.
50 *
51 * @return The value of the element of the matrix.
52 */
53 virtual double get_element(std::size_t i, std::size_t j) const = 0;
54
55 /**
56 * @brief Set an element of the matrix at indexes i, j. It must not be called after `setup_solver`.
57 *
58 * @param i The row index of the set element.
59 * @param j The column index of the set element.
60 * @param aij The value to set in the element of the matrix.
61 */
62 virtual void set_element(std::size_t i, std::size_t j, double aij) = 0;
63
64 /**
65 * @brief Perform a pre-process operation on the solver. Must be called after filling the matrix.
66 */
67 virtual void setup_solver() = 0;
68
69 /**
70 * @brief Solve the multiple right-hand sides linear problem Ax=b or its transposed version A^tx=b inplace.
71 *
72 * @param[in, out] b A 2D Kokkos::View storing the multiple right-hand sides of the problem and receiving the corresponding solution.
73 * @param transpose Choose between the direct or transposed version of the linear problem.
74 */
75 virtual void solve(MultiRHS b, bool transpose) const = 0;
76
77 /**
78 * @brief Get the size of the square matrix in one of its dimensions.
79 *
80 * @return The size of the matrix in one of its dimensions.
81 */
82 std::size_t size() const;
83
84 /**
85 * @brief Get the required number of rows of the multi-rhs view passed to solve().
86 *
87 * Implementations may require a number of rows larger than what `size` returns for optimization purposes.
88 *
89 * @return The required number of rows of the multi-rhs view. It is guaranteed to be greater or equal to `size`.
90 */
91 std::size_t required_number_of_rhs_rows() const;
92
93private:
94 virtual std::size_t impl_required_number_of_rhs_rows() const;
95};
96
97/**
98 * @brief Prints the matrix of a SplinesLinearProblem in a std::ostream. It must not be called after `setup_solver`.
99 *
100 * @param[out] os The stream in which the matrix is printed.
101 * @param[in] linear_problem The SplinesLinearProblem of the matrix to print.
102 *
103 * @return The stream in which the matrix is printed.
104**/
105template <class ExecSpace>
106std::ostream& operator<<(std::ostream& os, SplinesLinearProblem<ExecSpace> const& linear_problem);
107
108#if defined(KOKKOS_ENABLE_SERIAL)
109extern template class SplinesLinearProblem<Kokkos::Serial>;
110extern template std::ostream& operator<<(
111 std::ostream& os,
112 SplinesLinearProblem<Kokkos::Serial> const& linear_problem);
113#endif
114#if defined(KOKKOS_ENABLE_OPENMP)
115extern template class SplinesLinearProblem<Kokkos::OpenMP>;
116extern template std::ostream& operator<<(
117 std::ostream& os,
118 SplinesLinearProblem<Kokkos::OpenMP> const& linear_problem);
119#endif
120#if defined(KOKKOS_ENABLE_CUDA)
121extern template class SplinesLinearProblem<Kokkos::Cuda>;
122extern template std::ostream& operator<<(
123 std::ostream& os,
124 SplinesLinearProblem<Kokkos::Cuda> const& linear_problem);
125#endif
126#if defined(KOKKOS_ENABLE_HIP)
127extern template class SplinesLinearProblem<Kokkos::HIP>;
128extern template std::ostream& operator<<(
129 std::ostream& os,
130 SplinesLinearProblem<Kokkos::HIP> const& linear_problem);
131#endif
132#if defined(KOKKOS_ENABLE_SYCL)
133extern template class SplinesLinearProblem<Kokkos::SYCL>;
134extern template std::ostream& operator<<(
135 std::ostream& os,
136 SplinesLinearProblem<Kokkos::SYCL> const& linear_problem);
137#endif
138
139} // namespace ddc::detail
friend class ChunkSpan
friend class Chunk
Definition chunk.hpp:83
friend class DiscreteDomain
KOKKOS_FUNCTION constexpr bool operator!=(DiscreteVector< OTags... > const &rhs) const noexcept
A class which provides helper functions to initialise the Greville points from a B-Spline definition.
static ddc::DiscreteDomain< Sampling > get_domain()
Get the domain which gives us access to all of the Greville points.
static auto get_sampling()
Get the UniformPointSampling defining the Greville points.
Helper class for the initialisation of the mesh of interpolation points.
static auto get_sampling()
Get the sampling of interpolation points.
static ddc::DiscreteDomain< Sampling > get_domain()
Get the domain which can be used to access the interpolation points in the sampling.
Storage class of the static attributes of the discrete dimension.
Impl & operator=(Impl &&x)=default
Move-assigns.
Impl(RandomIt breaks_begin, RandomIt breaks_end)
Constructs an Impl by iterating over a range of break points from begin to end.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the first break point of the domain on which the B-splines are defined.
Impl(std::vector< ddc::Coordinate< CDim > > const &breaks)
Constructs an Impl using a std::vector.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(Impl &&x)=default
Move-constructs.
Impl(std::initializer_list< ddc::Coordinate< CDim > > breaks)
Constructs an Impl using a brace-list, i.e.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION std::size_t npoints() const noexcept
The number of break points.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl & operator=(Impl const &x)=default
Copy-assigns.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the last break point of the domain on which the B-splines are defined.
The type of a non-uniform 1D spline basis (B-spline).
static constexpr std::size_t degree() noexcept
The degree of B-splines.
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is not the case here).
NonUniformPointSampling models a non-uniform discretization of the CDim segment .
A class for creating a spline approximation of a function.
batched_derivs_domain_type< BatchedInterpolationDDom > batched_derivs_xmax_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which derivatives on upper boundary are defined.
static constexpr SplineSolver s_spline_solver
The SplineSolver giving the backend used to perform the spline approximation.
batch_domain_type< BatchedInterpolationDDom > batch_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the batch domain.
std::tuple< ddc::Chunk< double, ddc::DiscreteDomain< ddc::Deriv< typename InterpolationDDim::continuous_dimension_type > >, ddc::KokkosAllocator< double, OutMemorySpace > >, ddc::Chunk< double, ddc::DiscreteDomain< InterpolationDDim >, ddc::KokkosAllocator< double, OutMemorySpace > >, ddc::Chunk< double, ddc::DiscreteDomain< ddc::Deriv< typename InterpolationDDim::continuous_dimension_type > >, ddc::KokkosAllocator< double, OutMemorySpace > > > quadrature_coefficients() const
Compute the quadrature coefficients associated to the b-splines used by this SplineBuilder.
SplineBuilder & operator=(SplineBuilder const &x)=delete
Copy-assignment is deleted.
SplineBuilder(SplineBuilder &&x)=default
Move-constructs.
SplineBuilder(interpolation_domain_type const &interpolation_domain, std::optional< std::size_t > cols_per_chunk=std::nullopt, std::optional< unsigned int > preconditioner_max_block_size=std::nullopt)
Build a SplineBuilder acting on interpolation_domain.
static constexpr ddc::BoundCond s_bc_xmin
The boundary condition implemented at the lower bound.
static constexpr int s_nbc_xmin
The number of equations defining the boundary condition at the lower bound.
SplineBuilder & operator=(SplineBuilder &&x)=default
Move-assigns.
BatchedInterpolationDDom batched_interpolation_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain representing interpolation points.
SplineBuilder(SplineBuilder const &x)=delete
Copy-constructor is deleted.
SplineBuilder(BatchedInterpolationDDom const &batched_interpolation_domain, std::optional< std::size_t > cols_per_chunk=std::nullopt, std::optional< unsigned int > preconditioner_max_block_size=std::nullopt)
Build a SplineBuilder acting on the interpolation domain contained by batched_interpolation_domain.
static constexpr bool s_odd
Indicates if the degree of the splines is odd or even.
interpolation_domain_type interpolation_domain() const noexcept
Get the domain for the 1D interpolation mesh used by this class.
batched_derivs_domain_type< BatchedInterpolationDDom > batched_derivs_xmin_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which derivatives on lower boundary are defined.
static constexpr ddc::BoundCond s_bc_xmax
The boundary condition implemented at the upper bound.
static constexpr int s_nbc_xmax
The number of equations defining the boundary condition at the upper bound.
void operator()(ddc::ChunkSpan< double, batched_spline_domain_type< BatchedInterpolationDDom >, Layout, memory_space > spline, ddc::ChunkSpan< double const, BatchedInterpolationDDom, Layout, memory_space > vals, std::optional< ddc::ChunkSpan< double const, batched_derivs_domain_type< BatchedInterpolationDDom >, Layout, memory_space > > derivs_xmin=std::nullopt, std::optional< ddc::ChunkSpan< double const, batched_derivs_domain_type< BatchedInterpolationDDom >, Layout, memory_space > > derivs_xmax=std::nullopt) const
Compute a spline approximation of a function.
batched_spline_domain_type< BatchedInterpolationDDom > batched_spline_domain(BatchedInterpolationDDom const &batched_interpolation_domain) const noexcept
Get the whole domain on which spline coefficients are defined.
ddc::DiscreteDomain< bsplines_type > spline_domain() const noexcept
Get the 1D domain on which spline coefficients are defined.
~SplineBuilder()=default
Destructs.
Storage class of the static attributes of the discrete dimension.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(ddc::Coordinate< CDim > rmin, ddc::Coordinate< CDim > rmax, std::size_t ncells)
Constructs a spline basis (B-splines) with n equidistant knots over .
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the upper bound of the domain on which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the lower bound of the domain on which the B-splines are defined.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl &&x)=default
Move-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
Impl & operator=(Impl &&x)=default
Move-assigns.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
Impl & operator=(Impl const &x)=default
Copy-assigns.
The type of a uniform 1D spline basis (B-spline).
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is the case here).
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr std::size_t degree() noexcept
The degree of B-splines.
UniformPointSampling models a uniform discretization of the provided continuous dimension.
The top-level namespace of DDC.
constexpr int n_boundary_equations(ddc::BoundCond const bc, std::size_t const degree)
Return the number of equations needed to describe a given boundary condition.
constexpr bool is_uniform_bsplines_v
Indicates if a tag corresponds to uniform B-splines or not.
BoundCond
An enum representing a spline boundary condition.
@ GREVILLE
Use Greville points instead of conditions on derivative for B-Spline interpolation.
@ HERMITE
Hermite boundary condition.
@ PERIODIC
Periodic boundary condition u(1)=u(n)
ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > integrals(ExecSpace const &execution_space, ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > int_vals)
Compute the integrals of the B-splines.
SplineSolver
An enum determining the backend solver of a SplineBuilder or SplineBuilder2d.
@ LAPACK
Enum member to identify the LAPACK-based solver (direct method)
@ GINKGO
Enum member to identify the Ginkgo-based solver (iterative method)
constexpr bool is_non_uniform_bsplines_v
Indicates if a tag corresponds to non-uniform B-splines or not.
A templated struct representing a discrete dimension storing the derivatives of a function along a co...
Definition deriv.hpp:15
If the type DDim is a B-spline, defines type to the discrete dimension of the associated knots.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos, ddc::Coordinate< DimNI > eval_pos_not_interest_min, ddc::Coordinate< DimNI > eval_pos_not_interest_max)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType coord_extrap, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines1, BSplines2 >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType pos, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.
A functor describing a null extrapolation boundary value for 1D spline evaluator.
KOKKOS_FUNCTION double operator()(CoordType, ChunkSpan) const
Evaluates the spline at a coordinate outside of the domain.
KOKKOS_FUNCTION double operator()(CoordType, ChunkSpan) const