DDC 0.10.0
Loading...
Searching...
No Matches
math_tools.hpp
1// Copyright (C) The DDC development team, see COPYRIGHT.md file
2//
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
7#include <array>
8#include <cstddef>
9
10#include <Kokkos_Core.hpp>
11
12namespace ddc::detail {
13
14template <typename T>
15KOKKOS_INLINE_FUNCTION T sum(T* array, int size)
16{
17 T val(0.0);
18 for (int i(0); i < size; ++i) {
19 val += array[i];
20 }
21 return val;
22}
23
24template <class ElementType, class LayoutPolicy, class AccessorPolicy, std::size_t Ext>
25KOKKOS_INLINE_FUNCTION ElementType
26sum(Kokkos::mdspan<
27 ElementType,
28 Kokkos::extents<std::size_t, Ext>,
29 LayoutPolicy,
30 AccessorPolicy> const& array)
31{
32 ElementType val(0.0);
33 for (std::size_t i(0); i < array.extent(0); ++i) {
34 val += array[i];
35 }
36 return val;
37}
38
39template <class ElementType, class LayoutPolicy, class AccessorPolicy, std::size_t Ext>
40KOKKOS_INLINE_FUNCTION ElementType
41sum(Kokkos::mdspan<
42 ElementType,
43 Kokkos::extents<std::size_t, Ext>,
44 LayoutPolicy,
45 AccessorPolicy> const& array,
46 int start,
47 int end)
48{
49 ElementType val(0.0);
50 for (int i(start); i < end; ++i) {
51 val += array[i];
52 }
53 return val;
54}
55
56template <typename T>
57KOKKOS_INLINE_FUNCTION T modulo(T x, T y)
58{
59 return x - y * Kokkos::floor(double(x) / y);
60}
61
62KOKKOS_INLINE_FUNCTION double ipow(double a, std::size_t i)
63{
64 double r(1.0);
65 for (std::size_t j(0); j < i; ++j) {
66 r *= a;
67 }
68 return r;
69}
70
71KOKKOS_INLINE_FUNCTION double ipow(double a, int i)
72{
73 double r(1.0);
74 if (i > 0) {
75 for (int j(0); j < i; ++j) {
76 r *= a;
77 }
78 } else if (i < 0) {
79 for (int j(0); j < -i; ++j) {
80 r *= a;
81 }
82 r = 1.0 / r;
83 }
84 return r;
85}
86
87KOKKOS_INLINE_FUNCTION std::size_t factorial(std::size_t f)
88{
89 std::size_t r = 1;
90 for (std::size_t i(2); i < f + 1; ++i) {
91 r *= i;
92 }
93 return r;
94}
95
96template <class T, std::size_t D>
97KOKKOS_INLINE_FUNCTION T dot_product(std::array<T, D> const& a, std::array<T, D> const& b)
98{
99 T result = 0;
100 for (std::size_t i(0); i < D; ++i) {
101 result += a[i] * b[i];
102 }
103 return result;
104}
105
106template <typename T>
107KOKKOS_INLINE_FUNCTION T min(T x, T y)
108{
109 return x < y ? x : y;
110}
111
112template <typename T>
113KOKKOS_INLINE_FUNCTION T max(T x, T y)
114{
115 return x > y ? x : y;
116}
117
118} // namespace ddc::detail
friend class ChunkSpan
friend class DiscreteDomain
KOKKOS_FUNCTION constexpr bool operator!=(DiscreteVector< OTags... > const &rhs) const noexcept
A class which provides helper functions to initialise the Greville points from a B-Spline definition.
static ddc::DiscreteDomain< Sampling > get_domain()
Get the domain which gives us access to all of the Greville points.
static auto get_sampling()
Get the UniformPointSampling defining the Greville points.
Storage class of the static attributes of the discrete dimension.
Impl & operator=(Impl &&x)=default
Move-assigns.
Impl(RandomIt breaks_begin, RandomIt breaks_end)
Constructs an Impl by iterating over a range of break points from begin to end.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the first break point of the domain on which the B-splines are defined.
Impl(std::vector< ddc::Coordinate< CDim > > const &breaks)
Constructs an Impl using a std::vector.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(Impl &&x)=default
Move-constructs.
Impl(std::initializer_list< ddc::Coordinate< CDim > > breaks)
Constructs an Impl using a brace-list, i.e.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION std::size_t npoints() const noexcept
The number of break points.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl & operator=(Impl const &x)=default
Copy-assigns.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the last break point of the domain on which the B-splines are defined.
The type of a non-uniform 1D spline basis (B-spline).
static constexpr std::size_t degree() noexcept
The degree of B-splines.
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is not the case here).
NonUniformPointSampling models a non-uniform discretization of the CDim segment .
Storage class of the static attributes of the discrete dimension.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_last_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the last support knot associated to a DiscreteElement identifying a B-splin...
Impl(ddc::Coordinate< CDim > rmin, ddc::Coordinate< CDim > rmax, std::size_t ncells)
Constructs a spline basis (B-splines) with n equidistant knots over .
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmax() const noexcept
Returns the coordinate of the upper bound of the domain on which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis(DSpan1D values, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-splines at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteDomain< knot_discrete_dimension_type > break_point_domain() const
Returns the discrete domain which describes the break points.
KOKKOS_INLINE_FUNCTION ddc::Coordinate< CDim > rmin() const noexcept
Returns the coordinate of the lower bound of the domain on which the B-splines are defined.
~Impl()=default
Destructs.
KOKKOS_INLINE_FUNCTION std::size_t nbasis() const noexcept
Returns the number of basis functions.
Impl(Impl const &x)=default
Copy-constructs.
KOKKOS_INLINE_FUNCTION std::size_t size() const noexcept
Returns the number of elements necessary to construct a spline representation of a function.
Impl(Impl &&x)=default
Move-constructs.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_basis_and_n_derivs(ddc::DSpan2D derivs, ddc::Coordinate< CDim > const &x, std::size_t n) const
Evaluates non-zero B-spline values and derivatives at a given coordinate.
KOKKOS_INLINE_FUNCTION ddc::DiscreteElement< knot_discrete_dimension_type > get_first_support_knot(discrete_element_type const &ix) const
Returns the coordinate of the first support knot associated to a DiscreteElement identifying a B-spli...
KOKKOS_INLINE_FUNCTION double length() const noexcept
Returns the length of the domain.
Impl(Impl< DDim, OriginMemorySpace > const &impl)
Copy-constructs from another Impl with a different Kokkos memory space.
KOKKOS_INLINE_FUNCTION std::size_t ncells() const noexcept
Returns the number of cells over which the B-splines are defined.
KOKKOS_INLINE_FUNCTION discrete_element_type eval_deriv(DSpan1D derivs, ddc::Coordinate< CDim > const &x) const
Evaluates non-zero B-spline derivatives at a given coordinate.
Impl & operator=(Impl &&x)=default
Move-assigns.
KOKKOS_INLINE_FUNCTION discrete_domain_type full_domain() const
Returns the discrete domain including eventual additional B-splines in the periodic case.
Impl & operator=(Impl const &x)=default
Copy-assigns.
The type of a uniform 1D spline basis (B-spline).
static constexpr bool is_uniform() noexcept
Indicates if the B-splines are uniform or not (this is the case here).
static constexpr bool is_periodic() noexcept
Indicates if the B-splines are periodic or not.
static constexpr std::size_t degree() noexcept
The degree of B-splines.
UniformPointSampling models a uniform discretization of the provided continuous dimension.
The top-level namespace of DDC.
constexpr int n_boundary_equations(ddc::BoundCond const bc, std::size_t const degree)
Return the number of equations needed to describe a given boundary condition.
constexpr bool is_uniform_bsplines_v
Indicates if a tag corresponds to uniform B-splines or not.
BoundCond
An enum representing a spline boundary condition.
@ GREVILLE
Use Greville points instead of conditions on derivative for B-Spline interpolation.
@ HERMITE
Hermite boundary condition.
@ PERIODIC
Periodic boundary condition u(1)=u(n)
ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > integrals(ExecSpace const &execution_space, ddc::ChunkSpan< double, ddc::DiscreteDomain< DDim >, Layout, MemorySpace > int_vals)
Compute the integrals of the B-splines.
constexpr bool is_non_uniform_bsplines_v
Indicates if a tag corresponds to non-uniform B-splines or not.
A templated struct representing a discrete dimension storing the derivatives of a function along a co...
Definition deriv.hpp:15
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos, ddc::Coordinate< DimNI > eval_pos_not_interest_min, ddc::Coordinate< DimNI > eval_pos_not_interest_max)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType coord_extrap, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines1, BSplines2 >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.
KOKKOS_FUNCTION double operator()(CoordType pos, ddc::ChunkSpan< double const, ddc::DiscreteDomain< BSplines >, Layout, MemorySpace > const spline_coef) const
Get the value of the function on B-splines at a coordinate outside the domain.
ConstantExtrapolationRule(ddc::Coordinate< DimI > eval_pos)
Instantiate a ConstantExtrapolationRule.